Молекулярная диагностика генетических заболеваний: особенности и методы исследования

Молекулярная диагностика генетических заболеваний: особенности и методы исследования

Когда мы слышим о генетическом анализе крови, на ум сразу приходит сложное и дорогостоящее исследование, требующее привлечения суперсовременных технологий, но это далеко не так. Генетические тесты в настоящее время стали частью обычного арсенала лабораторных диагностических методов. Они могут быть назначены для оценки индивидуальной реакции пациента на лекарственные препараты, в рамках пренатальной диагностики, для выявления передающихся по наследству заболеваний, установления родства и даже в целях профилактики.

В ХХ веке расшифровка генома человека стала настоящим прорывом: мы понимаем, как генетический код влияет на каждого из нас. Несмотря на то, что ученые до сих пор спорят на эту тему, результаты многолетних исследований стали доступными каждому человеку благодаря молекулярно-генетической диагностике.

В данной статье мы расскажем, как узнать свой личный генетический код и зачем это нужно.

Метод молекулярно-генетической диагностики является новым способом обследования организма, которое позволяет точно и быстро выявить вирусы и инфекции, мутации генетических материалов, вызывающих различные заболевания, а также оценить риски наследственных и других заболеваний. Однако, этот метод обладает далеко не полным спектром возможностей исследования ДНК.

Одним из главных преимуществ молекулярно-генетической диагностики является то, что это исследование проводится in vitro, минимизируя необходимость медицинского вмешательства. Благодаря этому метод можно успешно применять для диагностики заболеваний у эмбрионов, а также у ослабленных и тяжелобольных пациентов.

Кровь из вены является самым распространенным материалом для исследования молекулярно-генетической диагностики. Тем не менее, возможно извлечение ДНК/РНК из жидкостей и тканей других органов: слюны, соскоба слизистой рта, выделений из половых органов, околоплодной жидкости, волос, ногтей и т.д.

Этот метод молекулярно-генетической диагностики является значительным шагом к персонализированной медицине, так как он позволяет учитывать все особенности конкретного пациента при его обследовании и лечении.

Методы молекулярной диагностики находят применение в различных областях медицины. Рассмотрим некоторые из задач и сфер, где используется молекулярная диагностика:

  1. Обнаружение патологий. Молекулярная диагностика применяется в случаях, когда обычные методы не позволяют определить наличие инфекционного или вирусного заболевания. Она может обнаружить заболевание на ранней стадии, когда нет внешних симптомов.
  2. Исследование аллергических реакций. Молекулярная диагностика используется для определения аллергии. Она более точна и безопасна для пациента, так как не требует прямого контакта с аллергеном.
  3. Оценка рисков развития наследственных заболеваний. Молекулярная диагностика помогает выявить опасность для взрослых и детей подвергнуться различным патологиям. Некоторые болезни вызваны мутацией гена, а некоторые — генетическими особенностями. Информация о наличии генетической предрасположенности позволяет оценить риски передачи наследственных заболеваний от родителей к ребенку и профилактику болезней с помощью изменения образа жизни.
  4. Перинатальная медицина. Молекулярная диагностика может определить состояние здоровья и генетические предрасположенности эмбрионов. Анализ ДНК еще не родившегося ребенка позволяет распознать синдромы Дауна, Эдвардса, Патау, Тернера, Клайнфельтера. Также молекулярная диагностика применяется в области вспомогательных репродуктивных технологий.
  5. Фармакогенетика. Молекулярная диагностика позволяет определить эффективность препаратов при лечении тяжелых заболеваний, например, онкологических.
  6. Спортивная медицина. Молекулярная диагностика может помочь выявить спортивные перспективы ребенка и определить, какой вид занятий максимально пользуется здоровью.

Медики с большим интересом относятся к возможностям молекулярной диагностики. Применение персонализированной терапии, учитывающей генетические особенности каждого пациента, позволит избежать побочных эффектов лекарств и снизить затраты на лечение. В США проблема побочных воздействий лекарств входит в пятерку самых распространенных причин госпитализации и смерти.

Генетические исследования обычно проводятся, когда пациент стремится получить информацию о своем здоровье и состоянии организма. Приведем несколько конкретных ситуаций, в которых рекомендуется обращаться к генетическим исследованиям:

  • Для установления точного диагноза. Нередко бывает, что пациентам неправильно определяют аллергены или появляется задержка в диагностировании вирусных заболеваний, что может затруднить эффективное лечение. В таких случаях результаты генетического анализа могут быть полезны.
  • Для профилактики возможных патологий. Если человек знает о своем повышенном риске заболевания раком или сердечно-сосудистыми заболеваниями, то проведение генетических исследований может помочь ему предпринять соответствующие меры по профилактике таких заболеваний и отказаться от вредных привычек.
  • Для повышения эффективности лечения. Например, онкологические заболевания имеют множество вариантов терапии. Если правильно определить, какой из методов будет наиболее эффективным, можно сэкономить время, а иногда — и спасти жизнь пациента.

Кроме того, существует ряд генетических исследований, связанных с планированием и рождением ребенка. Чаще всего родители обращаются к этим исследованиям по следующим причинам:

  • Для изучения генетической совместимости родителей, оценки рисков возможных наследственных заболеваний у будущего ребенка.
  • Для обнаружения возможных патологий плода в ранних стадиях беременности.
  • Для диагностики возможных заболеваний и аллергических реакций ребенка после рождения.
  • Для определения того, какие виды спорта, питания и образа жизни наиболее подходят ребенку.
  • Для установления отцовства или материнства.

Этапы молекулярно-генетического исследования

При выборе метода молекулярно-генетического исследования необходимо выполнить следующие этапы:

  1. Взять биоматериал. Кровь пациента чаще всего используется для исследования. Полученный материал маркируется и отправляется в лабораторию.
  2. Выделить ДНК/РНК.
  3. Провести исследования в соответствии с выбранным методом.
  4. Изучить и интерпретировать результаты.
  5. Выдать заключение.

Методы молекулярно-генетической диагностики – это совокупность лабораторных методов, основанных на анализе генетического материала (ДНК и РНК). Они позволяют определять наличие или отсутствие генетических изменений, а также выявлять наследственную предрасположенность к различным заболеваниям.

Одним из наиболее распространенных методов молекулярно-генетической диагностики является полимеразная цепная реакция (ПЦР). Этот метод позволяет увеличивать количество копий генетического материала для дальнейшего анализа. Также существуют методы, основанные на гибридизации (соединении генетических материалов по определенным закономерностям), например, гибридизационный анализ с использованием РНК-зонда.

Методы молекулярно-генетической диагностики широко применяются в медицине для диагностики наследственных заболеваний, а также в судебно-медицинской экспертизе для определения отцовства или материнства. Они позволяют получить точные и надежные результаты, а также ускорить процесс диагностики и лечения.

Молекулярная цитогенетика является эффективным методом выявления наследственных заболеваний, врожденных пороков развития и психических отклонений. Суть метода заключается в исследовании хромосом при помощи специальных микроматриц, которые наносят на ДНК-чипы. Один из основных этапов анализа - извлечение лимфоцитов из образца крови, которые затем помещают в питательную среду на 48-72 часа. После прохождения указанного времени производится их изучение. Этот метод назначается в основном для изучения причин бесплодия и невынашивания беременности. А также для установления диагноза у детей при подозрении на врожденные заболевания. Молекулярная цитогенетика очень точна, однако, поскольку результат можно получить только через 20-30 дней после проведения анализа, ее можно назвать трудоемкой и длительной процедурой.

Метод имеет как свои преимущества, так и недостатки. Одно из основных достоинств состоит в его специфичности, поскольку при помощи молекулярной цитогенетики можно выявить лишь небольшое количество патологий, включая аутизм. Однако, при этом метод достаточно точен и во многих случаях не допускает ошибок.

Метод полимеразной цепной реакции (ПЦР) был изобретен в 1983 году и по-прежнему является наиболее распространенным и фундаментальным способом в молекулярной диагностике. Он отличается высочайшей точностью, чувствительностью и скоростью проведения исследования. ДНК/РНК молекулярной диагностики методом ПЦР позволяет выявлять множество патологий, таких как ВИЧ, вирусные гепатиты, половые инфекции, туберкулез, боррелиоз, энцефалит и прочие.

Для проведения анализа выбирают участок ДНК и многократно увеличивают его количество в лаборатории с помощью специальных веществ. Большой перечень биоматериалов подходит для диагностики: кровь, слюна, моча, выделения из половых органов, плевральная и спинномозговая жидкость, ткани плаценты и т.д.

FISH: метод выявления атипичных генов

Метод флуоресцентной гибридизации (FISH) – это молекулярный метод исследования уникальных нуклеотидных соединений отдельной хромосомы или ее участка. Для этого используются короткие меченые флуоресцентными маркерами ДНК-последовательности, так называемые зонды, которые выявляют фрагменты с атипичными генами. Биологический материал для исследования может быть любым – кровь, костный мозг, плацента, ткани эмбриона, биопсия и т.д. Однако, важно, чтобы образец доставили в лабораторию немедленно после его получения.

FISH-метод широко используется в онкологии, например, для отслеживания остаточных злокачественных клеток после курса химиотерапии, в пренатальной диагностике для оценки риска развития у плода врожденных пороков, а также в гематологии. Этот метод выявления атипичных генов является очень чувствительным и точным, его погрешность составляет около 0,5%, а результат можно получить уже через 72 часа. Однако, у FISH есть и недостатки: он более специфичен, чем микроматричный цитогенетический анализ, и может использоваться только для подтверждения или опровержения предполагаемого диагноза.

Метод микрочипирования основан на использовании зондов, помеченных флуоресцентными последовательностями ДНК, которые извлекаются из биоматериала пациента. Эти зонды затем сравниваются с образцами, размещенными на микрочипе, который представляет собой стеклянную, пластиковую или гелевую базу, способную вместить тысячи микротестов, длиной от 25 до 1000 нуклеотидов. ДНК-микрочип может использоваться для анализа любого биоматериала, из которого можно извлечь образец ДНК/РНК.

Этот метод применяется в медицине, в том числе в онкологии и кардиологии для изучения генетической предрасположенности и оценки состояния организма. Он точен и чувствителен, результаты исследования готовы через 4–6 дней после забора материала.

Однако, в России микрочипирование применяют редко, что является его основным недостатком. В западных странах исследования ДНК/РНК уже распространены повсеместно, но в России эту услугу предлагают не все клиники.

Важно отметить, что молекулярная диагностика является неинвазивным и точным методом обследования организма, который нашел применение в разных областях медицины. Однако, информация, связанная со здоровьем и медициной, представлена только для ознакомительных целей и не должна стать поводом для самодиагностики или самолечения.

Фото: freepik.com

Комментарии (0)

Добавить комментарий

Ваш email не публикуется. Обязательные поля отмечены *